Functional consequence of covalent reaction of phosphoenolpyruvate with UDP-N-acetylglucosamine 1-carboxyvinyltransferase (MurA).
نویسندگان
چکیده
The enzyme MurA has been an established antibiotic target since the discovery of fosfomycin, which specifically inhibits MurA by covalent modification of the active site residue Cys-115. Early biochemical studies established that Cys-115 also covalently reacts with substrate phosphoenolpyruvate (PEP) to yield a phospholactoyl adduct, but the structural and functional consequences of this reaction remained obscure. We captured and depicted the Cys-115-PEP adduct of Enterobacter cloacae MurA in various reaction states by X-ray crystallography. The data suggest that cellular MurA predominantly exists in a tightly locked complex with UDP-N-acetylmuramic acid (UNAM), the product of the MurB reaction, with PEP covalently attached to Cys-115. The uniqueness and rigidity of this "dormant" complex was previously not recognized and presumably accounts for the failure of drug discovery efforts toward the identification of novel and effective MurA inhibitors. We demonstrate that recently published crystal structures of MurA from various organisms determined by different laboratories were indeed misinterpreted and actually contain UNAM and covalently bound PEP. The Cys-115-PEP adduct was also captured in vitro during the reaction of free MurA and substrate UDP-N-acetylglucosamine or isomer UDP-N-acetylgalactosamine. The now available series of crystal structures allows a comprehensive view of the reaction cycle of MurA. It appears that the covalent reaction of MurA with PEP fulfills dual functions by tightening the complex with UNAM for the efficient feedback regulation of murein biosynthesis and by priming the PEP molecule for instantaneous reaction with substrate UDP-N-acetylglucosamine.
منابع مشابه
Cloning, Expression and Characterization of UDP-N-Acetylglucosamine Enolpyruvyl Transferase (MurA) from Wolbachia Endosymbiont of Human Lymphatic Filarial Parasite Brugia malayi
Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamin...
متن کاملSuppressor Mutations Linking gpsB with the First Committed Step of Peptidoglycan Biosynthesis in Listeria monocytogenes.
The cell division protein GpsB is a regulator of the penicillin binding protein A1 (PBP A1) in the Gram-positive human pathogen Listeria monocytogenes Penicillin binding proteins mediate the last two steps of peptidoglycan biosynthesis as they polymerize and cross-link peptidoglycan strands, the main components of the bacterial cell wall. It is not known what other processes are controlled by G...
متن کاملIdentification of novel irreversible inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Haemophilus influenzae.
Uridinediphospho-N-acetylglucosamine enolpyruvyl transferase (MurA, E.C. 2.5.1.7) is an essential bacterial enzyme that catalyzes the first step of the cell wall biosynthetic pathway, which involves the transfer of an enolpyruvyl group from phosphoenolpyruvate to uridinediphospho-Nacetylglucosamine. In this study, novel inhibitors of Haemophilus influenzae MurA (Hi MurA) were identified using h...
متن کاملBenzothioxalone derivatives as novel inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferases (MurA and MurZ).
OBJECTIVES We sought to identify and characterize new inhibitors of MurA and MurZ, which are enzymes involved in the early stages of bacterial peptidoglycan synthesis. METHODS A library of ∼650 000 compounds was screened for inhibitors of Escherichia coli MurA in an endpoint assay measuring release of inorganic phosphate from phosphoenolpyruvate. Hits were validated by determining the concent...
متن کاملIn vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance.
Organisms of Chlamydia spp. are obligate intracellular, gram-negative bacteria with a dimorphic developmental cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial anomaly refers to the fact that cell wall-active antibiotics inhibit Chlamydia growth and peptidoglycan (PG) synthesis genes are present in the genome, yet there is no biochemical evidenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 16 شماره
صفحات -
تاریخ انتشار 2012